
 

 

  

PROBLEM SOLVING 

Mathematics Assessment Project 

CLASSROOM CHALLENGES 
A Formative Assessment Lesson 

Geometry Problems: 
Circles and Triangles 
 

Mathematics Assessment Resource Service 
University of Nottingham & UC Berkeley 
Beta Version 
 
 
For more details, visit: http://map.mathshell.org 
© 2012 MARS, Shell Center, University of Nottingham 
May be reproduced, unmodified, for non-commercial purposes under the Creative Commons license  
detailed at http://creativecommons.org/licenses/by-nc-nd/3.0/ - all other rights reserved 

 



 

Teacher guide   Geometry Problems: Circles and Triangles T-1 

Geometry Problems: Circles and Triangles 

MATHEMATICAL GOALS 
This lesson unit is intended to help you assess how well students are able to use geometric properties 
to solve problems. In particular, the lesson will help you identify and help students who have the 
following difficulties:  
• Solving problems by determining the lengths of the sides in right triangles.  
• Finding the measurements of shapes by decomposing complex shapes into simpler ones.  
The lesson unit will also help students to recognize that there may be different approaches to 
geometrical problems, and to understand the relative strengths and weaknesses of those approaches. 

COMMON CORE STATE STANDARDS 
This lesson relates to the following Mathematical Practices in the Common Core State Standards for 
Mathematics:  

1. Make sense of problems and persevere in solving them. 
2. Reason abstractly and quantitatively.  
3.  Construct viable arguments and critique the reasoning of others. 
6. Attend to precision. 
7. Look for and make use of structure. 

This lesson gives students the opportunity to apply their knowledge of the following Standards for 
Mathematical Content in the Common Core State Standards for Mathematics: 

G-SRT: Understand similarity in terms of similarity transformations. 
 Define trigonometric ratios and solve problems involving right triangles. 
G-C: Understand and apply theorems about circles. 

INTRODUCTION  
• Before the lesson, students attempt the problem individually. You then review their work and 

create questions for students to answer in order to improve their solutions.  
• During the lesson, students work collaboratively in small groups to produce an improved solution 

to the same problem.  
• Working in the same small groups, students comment on and evaluate some solutions produced 

by students in another class. 
• In a whole-class discussion, students explain and compare the alternative solution strategies they 

have seen and used.   
• Finally, students review the work they did on their individual solutions and write about what they 

learned. 

MATERIALS REQUIRED 
• Each individual student will need a copy of the task sheet Circles and Triangles, a ruler, 

calculator, pencil, mini-whiteboard, pen and eraser. 
• Each small group of students will need a copy of Sample Responses to Discuss, and a large sheet 

of paper for making a poster. 
• There are also some slides to help with instructions and to support whole-class discussion. 

TIME NEEDED 
15minutes before the lesson, a 1-hour lesson, and 10 minutes in a follow-up lesson (or for 
homework). Timings are approximate and will depend on the needs of the class.  
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BEFORE THE MAIN LESSON 

Assessment task: Circles and Triangles (15 
minutes) 

Have students do this task in class or for homework a day 
or more before the formative assessment lesson. This will 
give you an opportunity to assess the work and to find out 
the kinds of difficulties students have with it. Then you 
will be able to target your help more effectively in the 
follow-up lesson.  

Give out the task Circles and Triangles, a pencil, and a 
ruler. Issue calculators if students ask for them.  

Introduce the task briefly and help the class to understand 
the problem and its context.  

Read through the task and try to answer it as carefully 
as you can.  

Show all your work so that I can understand your 
reasoning. 

Don’t worry too much if you don’t understand everything, because there will be a lesson 
[tomorrow] using this task.  

It is important that students are allowed to answer the questions without assistance, as far as possible. 
If students are struggling to get started then ask questions that help them understand what is required, 
but make sure you do not do the task for them.  

Students who sit together often produce similar answers, and then when they come to compare their 
work, they have little to discuss. For this reason we suggest that, when students do the task 
individually, you ask them to move to different seats. Then at the beginning of the formative 
assessment lesson, allow them to return to their usual seats. Experience has shown that this produces 
more profitable discussions. 

When all students have made a reasonable attempt at the task, tell them that they will have time to 
revisit and revise their solutions later.  

Assessing students’ responses   
We suggest that you do not write scores on students’ work. The research shows that this is 
counterproductive, as it encourages students to compare scores, and distracts their attention from what 
they might do to improve their mathematical work.  

Instead, help students to make further progress by summarizing their difficulties as a series of 
questions. Some suggestions for these are given on the next page. These have been drawn from 
common difficulties observed in trials of this lesson unit.  

We suggest that you write your own lists of questions, based on your own students’ work, using these 
ideas. You may choose to write questions on each student’s work. If you do not have time to do this, 
select a few questions that will help the majority of students. These can then be written on the board 
at the beginning of the lesson. 
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Circles and Triangles 
This diagram shows a circle with one equilateral triangle inside and one equilateral triangle outside. 

 

 

1. Calculate the exact ratio of the areas of the two triangles.  
Show all your work. 

  

 

 

 

 

 

 

  
 

2. Draw a second circle inscribed inside the small triangle. 
Find the exact ratio of the areas of the two circles. 
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Common issues: Suggested questions and prompts: 

Student has difficulty getting started  • What do you know about the angles or lines 
in the diagram? How can you use what you 
know? What do you need to find out? 

• You may find it helps to give a name to some 
of the lengths. Try r for the radius of the 
circle, x for the side of the big triangle, and 
so on. 

• Can you add any helpful construction lines to 
your diagram? What do you know about 
these lines? 

• Can you find relationships between the 
lengths from what you know about 
geometry? 

Student works out the ratio by measuring the 
dimensions of the triangles  

• What are the advantages/disadvantages of 
your method?  

• Are your measurements accurate enough?  
How do you know? 

Student does not explain the method clearly 

For example: The student does not explain why 
triangles are similar. 
Or: The student does not explain why triangles are 
congruent. 

• Would someone unfamiliar with your type of 
solution easily understand your work?  

• How do you know these triangles are 
similar/congruent? 

• It may help to label points and lengths in the 
diagram. 

Student has problems recalling standard ratios 
The student recalls incorrectly or makes an error 
using the special ratios for a 30°, 60°, 90° triangle 
(1,   

! 

3 , 2).  

• What do you know about cos 30°? What do 
you know about sin 30°?  How can you use 
this information? 

• Use the Pythagorean Theorem to 
check/calculate the ratio of the sides of the 
triangle. 

Student uses perception alone to calculate the 
ratio  
For example: The student rotates the small triangle 
about the center of the circle and assumes that the 
diagram alone is enough to show the ratio of areas 
is 4:1. 

• What math can you use to justify your 
answer? 

Student makes a technical error 
For example: The student makes an error 
manipulating an equation. 

• Check to see if you have made any algebraic 
errors. 
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Common issues: Suggested questions and prompts: 

Student uses ratios of lengths rather than ratios 
of areas 
For example: When finding the ratio of the areas of 
the two circles, the student obtains an incorrect 
answer because they find the ratio of the radii, 
rather than the ratio of the squares of the radii. 

• What is the formula for the area of the 
circle? How can you use it to find the ratio of 
the areas of the circles? 

Student produces correct solutions • Can you solve the problem using a different 
method?  Which method do you prefer? 
Why? 
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SUGGESTED LESSON OUTLINE 

Improve individual solutions to Circles and Triangles (10 minutes) 
Return students’ papers and give each student a mini-whiteboard, pen and eraser.  

Recall what we were looking at in a previous lesson.  What was the task? 

I have read your solutions and I have some questions about your work. 

If you have not added questions to individual pieces of work, write your list of questions on the 
board, and ask students to select questions appropriate to their own work. 

Ask students to spend a few minutes answering your questions. It is helpful if they do this using mini-
whiteboards, so that you can see what they are writing.  

I would like you to work on your own to answer my questions for about ten minutes. 

Collaborative small-group work on Circles and Triangles (10 minutes) 
When students have made a reasonable attempt at the task on their own, organize them into groups of 
two or three. Give each group a large, fresh piece of paper and a felt-tipped pen. Ask students to have 
another go at the task, but this time ask them to combine their ideas and make a poster to show their 
solutions.    

Put your own work aside until later in the lesson.  I want you to work in groups now. 

Your task is to work together to produce a solution that is better than your individual solutions. 

While students work in small groups you have two tasks, to note their different approaches to the 
task, and to support their reasoning.  

Note different student approaches to the task 
What mathematics do students choose to use? Have they moved on from the mathematical choices 
made in the assessment task? Do they measure the lengths of the sides of the triangles? Do they draw 
construction lines? Do they use similar triangles? Do they use algebra? Do they use proportion?  

Do students attempt to use the special ratios for 30°, 60°, 90° triangles (1 :   

! 

3  : 2)? If so, how do 
they do this? 

When finding the ratio of the areas of the two triangles, do they find the ratio of the squares of the 
bases or do they use an alternative method? When finding the ratio of the areas of the two circles, do 
students find the ratio of the squares of the radii or do they use an alternative method? 

Do students fully explain their solutions?  

Note any errors, and think about your understanding of students’ strengths and weaknesses from the 
assessment task. You can use this information to focus whole-class discussion towards the end of the 
lesson.  

Support student problem solving 
Try not to make suggestions that move students towards a particular approach to the task.  Instead, 
ask questions that help students to clarify their thinking. Focus on supporting students’ strategies 
rather than finding the numerical solution.  You may find the questions on the previous page helpful.  

If the whole class is struggling on the same issue, write relevant questions on the board.  

You may find that some students think the empirical approach (measuring the diagram) is best. 

Will your answer change if you measure in inches rather than millimeters?  
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This question may focus students’ attention on the lack of units of measure in the solution and the 
problem of accuracy. 

What are the strengths/weaknesses of this approach? 

Are your measurements exact? 

Do you think that, if we asked another group that used this same method, they would come up 
with exactly the same answer as you? 

Collaborative small-group analysis of Sample Responses to Discuss (20 minutes) 
When students have had sufficient time to attempt the problem in their group, give each group copies 
of the Sample Responses to Discuss. This task gives students an opportunity to evaluate a variety of 
possible approaches to the task, without providing a complete solution strategy.  

You may decide there is not enough time for each group to work through all four pieces of work.  In 
that case, be selective about what you hand out. For example, groups that have successfully 
completed the task using one method will benefit from looking at different approaches. Other groups, 
that have struggled with a particular approach may benefit from seeing a student version of the same 
strategy.  

Here are some different solutions to the problem.  

Compare these solutions with your own. 

Imagine you are the teacher.  Describe how the student approached the problem.  

Write your explanation on each solution. 

What do you like/dislike about the work? 

What isn’t clear about the work? 

What questions would you like to ask this student? 

To encourage students to do more than check to see if the answer is correct, you may wish to use the 
projector resource Analyzing Sample Responses to Discuss. During the group work, check to see 
which of the explanations students find more difficult to understand. 

Plenary whole-class discussion: comparing different solution methods (15 minutes) 
Organize a whole-class discussion comparing the four given solutions. Collect comments and ask for 
explanations.    

We are going to look at and compare the four solutions. 

Can you explain Bill’s method? 

Why does Carla draw another triangle in the inner circle?  

Encourage students to challenge explanations while keeping your own interventions to a minimum. 

Do you agree with Tyler’s explanation? [If yes] Explain again, in your own words. [If no] 
Explain what you think, then.  

Finally, ask students to evaluate and compare methods.  

Which one did you like best? Why? 

Which approach did you find most difficult to understand? Why? 

Did anyone come up with a method different from these? 

Some issues that might be discussed, with suggested questions and prompts, are given below.  
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Anya uses measurement 
Strengths: It is easy to do. It gives you a 
feeling for the answer. Anya’s calculations 
are correct. She has rounded to two 
decimal places. 

Weaknesses: You only know it is true for 
the particular case you measure. It’s not 
exact. It doesn’t tell you why it’s true. 
Anya does not calculate the areas of the 
circles, or their ratio (About: 252 : 112 = 5 : 
1). 

Do you think Anya’s answer is accurate? 

Would an answer rounded to four decimal 
places be better? 

What do you think the answer should be? 

  

Bill uses algebra and ratios 
Strengths: Bill’s method does not depend 
on the size of the diagram. 
You can use this method for all sorts of 
problems.  

Weaknesses: Bill’s work is difficult to 
follow. There are gaps in his explanation, 
and it is quite difficult work. Bill does not 
answer the question, as he does not 
calculate the ratio of the areas of the 
triangles.  

He does not explain why the side lengths in 
the triangle are in the ratios he writes 
down, which is based on these 
trigonometric ratios: 

    

! 

sin30° =
c
r

=
1
2

 

    

! 

cos30° =
b
r

=
3

2  

    

! 

tan60° =
a
r

= 3  

 

You could ask students to explain where the ratios in Bill’s solution come from, and then to use the 
lengths to complete the solution.  

Why does     

! 

c
r

=
1
2 ?  

© 2011 MARS University of Nottingham Beta Version Projector resources:  

Anya’s Solution 

2 

© 2011 MARS University of Nottingham Beta Version Projector resources:  

Bill’s Solution (1) 

3 
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Why does     

! 

b
r

=
3

2 ?  

Why does    

! 

a = r 3 ? 

Why does Bill multiply by 6? 

What is the ratio of the areas of the two triangles? 

Carla uses transformations – rotation 
and enlargement  
Strengths: It is simple. It is clear, even 
elegant. It is easy to do. 

Weaknesses: You have to see it! There are 
some gaps in the explanation that need to 
be completed.  

How do you know that, if you rotate the 
small triangle, it hits the midpoints of the 
large triangle? 

How do you know the four small triangles 
are congruent?  

How do you know the four small triangles 
are equilateral? 

How do you know the circle has been 
enlarged in the same ratio as the triangle? 

 

 

Darren uses algebra and similar 
triangles 
Strengths: Darren’s method does not 
depend on the size of the diagram. Darren 
has labeled the diagram: this makes his 
work easier to understand.  

Weaknesses: Darren’s work is difficult to 
follow at times. He has failed to explain 
part of his work. 

Are triangles OBC and OEF similar? How 
do you know?  

What does Darren mean by “double × 
double”?  

Can you use math to show Darren’s answer 
is correct?  

 

 

© 2011 MARS University of Nottingham Beta Version Projector resources:  

Carla’s Solution 

5 

© 2011 MARS University of Nottingham Beta Version Projector resources:  

Darren’s Solution 

6 
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Through comparing different methods, students may come to realize the power of using different 
methods to solve the same problem. 

Next lesson: review individual solutions to Circles and Triangles (10 minutes) 
Ask students to look again at their original individual solutions to the problem.  

Read through your original solution to the Circles and Triangles problem.  

Write what you have learned during the lesson.  

Suppose a friend began work on this task tomorrow. What advice would you give your friend to 
help him or her produce a good solution?  

Some teachers set this task as homework. 

SOLUTIONS 

Circles and Triangles 

Bill’s method:  
Question 1 

! 

cos30° =
b
r

=
3
2

 

! 

" b =
r 3
2

 

! 

sin30° =
c
r

=
1
2

 

! 

" c =
r
2

 

! 

tan60° =
a
r

= 3
 

! 

" a = r 3
 

Area of small equilateral triangle: 

! 

6 " 1
2
" b " c = 3 " r 3

2
"
r
2

=
3 3r2

4
 

Area of large equilateral triangle: 

! 

6 " 1
2
" a " r = 3 " r 3 " r = 3 3r2  

Ratio of area of the outer to the area of the inner triangle =

    

! 

3 3r2 : 3 3
4

r2= 4 :1.   

 

Question 2 

c is the radius of the inscribed circle. 

! 

c =
r
2

 

Ratio of area of circles: 

    

! 

= "r2 : "c2

= "r2 : " r2

4
= 4 :1.

 

 

!
"
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Carla’s method 
Question 1  

The small equilateral triangle is rotated through 60° about 
O, the center of the circle.  The arm of the rotation is the 
radius of the circle. Therefore points D, E, and F are all 
points on the circumference of the circle. 

These points bisect the sides of Δ ABC.   

 
 

Δ CFE is isosceles (CF = CE because the lengths of two tangents to a circle from a point are 
equal), so ∠CFE = ∠FEC = (180 − 60) ÷ 2	
  	
  =	
  60°.	
  	
  
Therefore	
  Δ CFE is equilateral. 

It follows by symmetry that all four small triangles are equilateral and congruent.  

Hence the ratio of the area of the outer to the area of the inner triangle = 4 : 1. 

Question 2 

Ratio of the area of the outer to the area of the inner 
triangle: 

= (3 × area Δ OCB) : (3 × area Δ FDO) 

    

! 

= 3" 1
2
" r "CB

# 

$ 
% 

& 

' 
(  :  3" 1

2
" h" 1

2
"CB

# 

$ 
% 

& 

' 
(    

    

! 

= 2r :  h.  

Since we know from Q1 that this ratio is 4 : 1 
    

! 

" h =
r
2

. 

Ratio of area of circles  

    

! 

= "r2 :  "h2  

    

! 

= "r2 :  " r2

4
 

  

! 

= 4 :  1. 
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Darren’s method 
Question 1 

Area of Δ DEF = 3 × area of Δ OEF 

! 

"
1
2
# 2n # (h + r) = 3 # 1

2
# 2n # h

" n(h + r) = 3nh
" h + r = 3h

" h =
r
2

 

Triangle OQE is similar to triangle OPB: 

 

∠POB is common to both triangles and OQE = OPB = 90° (altitudes of an equilateral triangle). 

Therefore PB = 2n and so CB = 4n (altitudes of an equilateral triangle bisect a side). 

Area Δ ABC = 3 x area Δ OBC 
    

! 

= 3" 1
2
" 4n" r = 6nr.  

Area Δ DEF = 3 x area Δ OEF 
    

! 

= 3" 1
2
"2n" r

2
=

3nr
2

.  

Ratio of areas of triangles 
    

! 

= 6nr : 3nr
2

= 4 :1. 

Question 2 

h is the radius of the inscribed circle. 

    

! 

h =
r
2

. 

The ratio of the area of the outer circle to the area of the 
inner circle: 	
  

    

! 

= "r2 :  "h2

= "r2 :  " r2

4
= 4 :  1.
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Circles and Triangles 
This diagram shows a circle with one equilateral triangle inside and one equilateral triangle outside. 

 

 

1. Calculate the exact ratio of the areas of the two triangles.  
Show all your work. 

  

 

 

 

 

 

 

  
 

2. Draw a second circle inscribed inside the small triangle. 
Find the exact ratio of the areas of the two circles. 
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Sample Responses to Discuss: Anya 
Imagine you are Anya’s teacher.  Describe how Anya approached the problem.  

Write your explanation on a separate sheet.   
What do you like/dislike about the work? 
What is unclear about the work? 
What questions would you like to ask Anya? 

 

This diagram shows a circle with one equilateral triangle inside and one equilateral triangle outside. 

 

1.  Calculate the ratio of the areas of the two triangles. 
Show all your work. 
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Sample Responses to Discuss: Bill 
Imagine you are Bill’s teacher.  Describe how Bill approached the problem.  

Write your explanation on a separate sheet.   
What do you like/dislike about the work? 
What is unclear about the work? 
What questions would you like to ask Bill? 

 

 

 

This diagram shows a circle with one equilateral triangle inside and one equilateral triangle outside. 

 
1.  Calculate the ratio of the areas of the two triangles. 

Show all your work. 
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Sample Responses to Discuss: Carla 
Imagine you are Carla’s teacher.  Describe how Carla approached the problem.  

Write your explanation on a separate sheet.   
What do you like/dislike about the work? 
What isn’t clear about the work? 
What questions would you like to ask Carla? 

 

 

This diagram shows a circle with one equilateral triangle inside and one equilateral triangle outside. 

 
1.  Calculate the ratio of the areas of the two triangles. 

Show all your work. 

 

2.  Draw a second circle inscribed inside the small triangle. 
Find the ratio of the areas of the two circles.  
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Sample Responses to Discuss: Darren 
Imagine you are Darren’s teacher.  Describe how Darren approached the problem.  

Write your explanation on a separate sheet.  
What do you like/dislike about the work? 
What is unclear about the work? 
What questions would you like to ask Darren? 

 

 

 

This diagram shows a circle with one equilateral triangle inside and one equilateral triangle outside. 

 
1.  Calculate the ratio of the areas of the two triangles. 

Show all your work. 
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Analyzing Sample Responses to Discuss 

 
•   Explain what the student has done.  
  
•  What do you like/dislike about the work? 

•  What is unclear about the work? 
 

•  What questions would you like to ask this 
student? 

P-1 
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Anya’s Solution 

P-2 
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Bill’s Solution (1) 

P-3 
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Bill’s Solution (2) 

P-4 



Geometry Problems: Circles and Triangles Projector Resources 

Carla’s Solution 

P-5 
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Darren’s Solution 

P-6 
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Orchestrating productive mathematical discussions: Five practices for 
helping teachers move beyond show and tell 

 
The Importance of Discussion 
Mathematical discussions are a key part of current visions of effective mathematics teaching  

• To encourage student construction of mathematical ideas 
• To make student’s thinking public so it can be guided in mathematically sound 
directions 

• To learn mathematical discourse practices 
 

Some Sources of the Challenge in Facilitating Discussions 

• Lack of familiarity 
• Reduces teachers’ perceived level of control 
• Requires complex, split-second decisions 
• Requires flexible, deep, and interconnected knowledge of content, pedagogy, and 
students 

 

The Five Practices (+) 

1. Anticipating (e.g., Fernandez & Yoshida, 2004; Schoenfeld, 1998) 

2. Monitoring (e.g., Hodge & Cobb, 2003; Nelson, 2001; Shifter, 2001) 

3. Selecting (e.g., Lampert, 2001; Stigler & Hiebert, 1999) 

4. Sequencing (e.g., Schoenfeld, 1998)  

5. Connecting (e.g., Ball, 2001; Brendehur & Frykholm, 2000) 

 
Before the Practices: Setting Goals and Selecting Tasks 

• It involves: 
• Identifying what students are to know and understand about mathematics as a 

result of their engagement in a particular lesson  
• Being as specific as possible so as to establish a clear target for instruction that 

can guide the selection of instructional activities and the use of the five 
practices  

• It is supported by: 
•  Thinking about what students will come to know and  understand rather than 

only on what they will do 
•  Consulting resources that can help in unpacking big ideas in mathematics 
•  Working in collaboration with other teachers 

 



Selecting a Task 

• It involves: 
• Identifying a mathematical task that is aligned with the lesson goals  
• Making sure the task is rich enough to support a discussion (i.e., a cognitively 

challenging mathematical task) 
• It is supported by: 

• Setting a clear and explicit goal for learning 
• Using the Task Analysis Guide which provides a list of characteristics of tasks at 

different levels of cognitive demand 
• Working in collaboration with colleagues 

 

Task Analysis Guide 

 

 

Memorization

• involve either reproducing previously learned facts, rules, formulae
  or definitions OR committing facts, rules, formulae or definitions to
  memory.

• cannot be solved using procedures because a procedure does not 
  exist or because the time frame in which the task is being completed 
  is too short to use a procedure.

• are not ambiguous.  Such tasks involve exact reproduction of 
  previously-seen material and what is to be reproduced is clearly and 
  directly stated. 

• have no connection to the concepts or meaning that underlie the 
  facts, rules, formulae or definitions being learned or reproduced. 

Procedures Without Connections

• are algorithmic.  Use of the procedure is either specifically called 
  for or its use is evident based on prior instruction, experience, or 
  placement of the task.

• require limited cognitive demand for successful completion.  There
  is little ambiguity about what needs to be done and how to do it.

• have no connection to the concepts or meaning that underlie the 
  procedure being used.

• are focused on producing correct answers rather than developing 
  mathematical understanding.
  
• require no explanations or explanations that focuses solely on 
  describing the procedure that was used.  

• require complex and non-algorithmic thinking (i.e., there is not a 
  predictable, well-rehearsed approach or pathway explicitly 
  suggested by the task, task instructions, or a worked-out example).  

•  require students to explore and understand the nature of 
   mathematical concepts, processes, or relationships.

• demand self-monitoring or self-regulation of one's own cognitive 
  processes.  

• require students to access relevant knowledge and experiences and 
  make appropriate use of them in working through the task.

• require students to analyze the task and actively examine task 
  constraints that may limit possible solution strategies and solutions.  

• require considerable cognitive effort and may involve some level 
  of anxiety for the student due to the unpredictable nature of the 
  solution process required.  

Figure 2. 3  Characteristes of mathematical instructional tasks*.

Lower-Level Demands Higher-Level Demands

Doing Mathematics

Procedures With Connections

• focus students' attention on the use of procedures for the purpose of 
  developing deeper levels of understanding of mathematical concepts
  and ideas.

• suggest pathways to follow (explicitly or implicitly) that are broad
  general procedures that have close connections to underlying 
  conceptual ideas as opposed to narrow algorithms that are opaque 
  with respect to underlying concepts. 

• usually are represented in multiple ways  (e.g., visual diagrams, 
  manipulatives, symbols, problem situations).  Making connections
  among multiple representations helps to develop meaning.

• require some degree of cognitive effort.  Although general 
  procedures may be followed, they cannot be followed mindlessly. 
  Students need to engage with the conceptual ideas that underlie the 
  procedures in order to successfully complete the task and develop 
  understanding.

*These characteristics are derived from the work of Doyle on academic tasks (1988), Resnick on high-level thinking skills (1987), and from the examination and categorization of 

hundreds of tasks used in QUASAR classrooms (Stein, Grover, & Henningsen, 1996; Stein, Lane, and Silver, 1996).  



1. Anticipating likely student responses to mathematical problems 

• It involves considering: 
• The array of strategies that students might use to approach or solve a 

challenging mathematical task 
• How to respond to what students produce 
• Which strategies will be most useful in addressing the mathematics to be 
learned 

• It is supported by: 
•  Doing the problem in as many ways as possible 
•  Discussing the problem with other teachers 
•  Drawing on relevant research 
•  Documenting student responses year to year 

 
 
2. Monitoring students’ actual responses during independent work 

• It involves: 
• Circulating while students work on the problem and watching and 
listening 

• Recording interpretations, strategies, and points of confusion 
• Asking questions to get students back “on track” or to advance their 
understanding 

• It is supported by: 
• Anticipating student responses beforehand 
• Carefully listening and asking probing questions 
• Using recording tools 

 
Monitoring Tool 

  Strategy Who and What Order 

 

  

 
 
 
3. Selecting student responses to feature during discussion 

• It involves: 
• Choosing particular students to present because of the mathematics 

available in their responses 
• Making sure that over time all students are seen as authors of 

mathematical ideas and have the opportunity to demonstrate 
competence 

List	
  the	
  different	
  solution	
  
paths	
  you	
  anticipated 



• Gaining some control over the content of the discussion (no more “who 
wants to present next?”) 

• It is supported by: 
• Anticipating and monitoring 
• Planning in advance which types of responses to select 

 
 
4. Sequencing student responses during the discussion 

• It involves: 
• Purposefully ordering presentations so as to make the mathematics 

accessible to all students 
• Building a mathematically coherent story line 

• It is supported by: 
• Anticipating, monitoring, and selecting 
• During anticipation work, considering how possible student responses 

are mathematically related 
 

 
5. Connecting student responses during the discussion 

• It involves: 
• Encouraging students to make mathematical connections between 

different student responses 
• Making the key mathematical ideas that are the focus of the lesson 
salient 

• It is supported by: 
• Anticipating, monitoring, selecting, and sequencing 
• During planning, considering how students might be prompted to 

recognize mathematical relationships between responses 
 

Why These Five Practices Likely to Help 

Provides teachers with more control 

• Over the content that is discussed 
• Over teaching moves: not everything improvisation 

 
Provides teachers with more time 

• To diagnose students’ thinking 
• To plan questions and other instructional moves 

 
Provides a reliable process for teachers to gradually improve their lessons over time 

  

 

adaptedpegs@pitt.edu  emstl.pbworks.com/w/file/fetch/48181147/PegSmith5Practices.ppt  
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314 STEIN ET AL.

Teachers who attempt to use inquiry-based, student-centered instructional tasks
face challenges that go beyond identifying well-designed tasks and setting them
up appropriately in the classroom. Because solution paths are usually not
specified for these kinds of tasks, students tend to approach them in unique and
sometimes unanticipated ways. Teachers must not only strive to understand how
students are making sense of the task but also begin to align students’ disparate
ideas and approaches with canonical understandings about the nature of mathe-
matics. Research suggests that this is difficult for most teachers (Ball, 1993,
2001; Leinhardt & Steele, 2005; Schoenfeld, 1998; Sherin, 2002). In this article,
we present a pedagogical model that specifies five key practices teachers can
learn to use student responses to such tasks more effectively in discussions:
anticipating, monitoring, selecting, sequencing, and making connections
between student responses. We first define each practice, showing how a typical
discussion based on a cognitively challenging task could be improved through
their use. We then explain how the five practices embody current theory about
how to support students’ productive disciplinary engagement. Finally, we close
by discussing how these practices can make discussion-based pedagogy manage-
able for more teachers.

A key challenge that mathematics teachers face in enacting current reforms is
to orchestrate whole-class discussions that use students’ responses to instruc-
tional tasks in ways that advance the mathematical learning of the whole class
(e.g., Ball, 1993; Lampert, 2001). In particular, teachers are often faced with a
wide array of student responses to cognitively demanding tasks and must find
ways to use them to guide the class toward deeper understandings of significant
mathematics. Here, we propose a model for the effective use of student responses
to such tasks in whole-class discussions that we argue has the potential for mak-
ing such teaching manageable for many more teachers. Our model provides
teacher educators with a set of five practices that they can use in their work with
K–12 pre- and in-service teachers to help them learn how to orchestrate discus-
sions that both build on student thinking and also advance important mathemati-
cal ideas. Researchers of classroom processes, teaching, and student learning of
mathematics will also be interested in the five practices model as a way of con-
ceptualizing investigations of classroom discourse.

We begin by discussing the importance and challenges of facilitating mathe-
matical discussions that are launched through cognitively demanding mathemati-
cal tasks—problems that promote conceptual understanding and the development
of thinking, reasoning, and problem-solving skills (Doyle, 1983, 1988; Henning-
sen & Stein, 1997; Hiebert & Wearne, 1993; Stein, Grover, & Henningsen,
1996). We then describe our five practices model using a concrete example of a
classroom discussion that was not as effective as it could have been to illustrate
how these practices can be used to more effectively facilitate mathematical dis-
cussions. Next, we ground the five practices in a theoretical framework for
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ORCHESTRATING PRODUCTIVE MATHEMATICAL DISCUSSIONS 315

promoting productive disciplinary engagement to explain how the practices work
together to help teachers create discussions that simultaneously build on student
thinking while leading toward the development of important mathematical ideas.
We close by discussing how the five practices model makes discussion facilita-
tion more manageable for teachers.

THE IMPORTANCE AND CHALLENGES OF FACILITATING 
MATHEMATICAL DISCUSSIONS

Mathematical discussions are a key part of current visions of effective mathe-
matics teaching (e.g., Cobb, Boufi, et al., 1997; Kazemi & Stipek, 2001;
Nathan & Knuth, 2003). In several countries, including the United States, the
expected role of the teacher is changing from “dispenser of knowledge” and
arbiter of mathematical “correctness” to an engineer of learning environ-
ments in which students actively grapple with mathematical problems and
construct their own understandings (Freudenthal, 1991; Gravemeijer, 1994;
Lewis & Tsuchida, 1998; National Council of Teachers of Mathematics
[NCTM], 1989, 1991; Stigler & Hiebert, 1999). In this vision, students are
presented with more realistic and complex mathematical problems, use each
other as resources for working through those problems, and then share their
strategies and solutions in whole-class discussions that are orchestrated by
the teacher. The role of the teacher during whole-class discussions is to
develop and then build on the personal and collective sensemaking of stu-
dents rather than to simply sanction particular approaches as being correct or
demonstrate procedures for solving predictable tasks (e.g., Fennema et al.,
1996). Such discussions are thought to support student learning of mathemat-
ics in part by helping students learn mathematical discourse practices (e.g.,
Chapin, O’Connor, & Anderson, 2003; Michaels et al., 2002), making
students’ thinking public so it can be guided in mathematically sound direc-
tions (e.g., Forman et al., 1998), and encouraging students to construct and
evaluate their own and each others’ mathematical ideas (e.g., Forman,
McCormick, & Donato, 1998).

A typical reform-oriented lesson that incorporates these kinds of whole-
class discussions often proceeds in three phases (Baxter & Williams, in press;
Lampert, 2001; Sherin, 2002). It begins with the launching of a mathematical
problem by the teacher that embodies important mathematical ideas and can be
solved in multiple ways (e.g., Lampert, 2001; Stroup, Ares, & Hurford, 2005).
During this “launch phase,” the teacher introduces the students to the problem,
the tools that are available for working on it, and the nature of the products
they will be expected to produce. This is followed by the “explore phase” in
which students work on the problem, often discussing it in pairs or small
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316 STEIN ET AL.

groups. As students work on the problem, they are encouraged to solve the
problem in whatever way makes sense to them and be prepared to explain their
approach to others in the class. The lesson then concludes with a whole-class
discussion and summary of various student-generated approaches to solving
the problem. During this “discuss and summarize” phase, a variety of
approaches to the problem are displayed for the whole class to view and
discuss.

During what we call “the first generation” of practice and research that
instantiated this vision, the role of the teacher with respect to building mathe-
matical ideas was ill-defined. Emphasis was placed on the use of cognitively
demanding tasks (e.g., Henningsen & Stein, 1997), the encouragement of
productive interactions during the explore phase (e.g., Yackel et al., 1990),
and the importance of listening respectfully to students’ reasoning throughout
(e.g., Fennema, Carpenter, & Peterson, 1989). During whole-class discus-
sions, the focus tended to be on creating norms that would allow students to
feel that their contributions were listened to and valued (e.g., Cobb, Wood,
&Yackel, 1993) and on the kinds of teacher questions that would prompt stu-
dents to explain their thinking (e.g., Hiebert & Wearne, 1993). Less attention
was paid to what teachers could actively do to guide whole-class discussions
toward important and worthwhile mathematics. In fact, many teachers got the
impression that in order for discussions to be focused on student thinking,
they must avoid providing any substantive guidance at all (cf. Baxter &
Williams, in press; Chazen & Ball, 2001; Lobato, Clarke, & Ellis, 2005;
Smith, 1996).

To provide an example of the kinds of discussions that often resulted during
this first generation, and which still continue in many teachers’ classrooms, con-
sider the following vignette that characterizes the kinds of mathematical discus-
sions that often occur in U.S. classrooms, even those using cognitively
demanding tasks as their basis for whole-class discussions.1

Leaves and Caterpillars Vignette

Students in David Crane’s fourth-grade class were solving the following problem:
“A fourth-grade class needs five leaves each day to feed its 2 caterpillars. How
many leaves would they need each day for 12 caterpillars?” Mr. Crane told his
students that they could solve the problem any way they wanted, but emphasized
that they needed to be able to explain how they got their answer and why it
worked.

As students worked in pairs to solve the problem, Mr. Crane walked around the
room making sure that students were on task and making progress on the prob-
lem. He was pleased to see that students were using lots of different approaches
to the problem—making tables, drawing pictures, and, in some cases, writing
explanations.
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ORCHESTRATING PRODUCTIVE MATHEMATICAL DISCUSSIONS 317

He noticed that two pairs of students had gotten wrong answers as shown below.

Mr. Crane wasn’t too concerned about the incorrect responses, however, since he
felt that once these students saw several correct solution strategies presented, they
would see what they did wrong and have new strategies for solving similar prob-
lems in the future.

When most students were finished, Mr. Crane called the class together to discuss
the problem. He began the discussion by asking for a volunteer to share their solu-
tion and strategy, being careful to avoid calling on the students with incorrect solu-
tions. Over the course of the next 15 minutes, first Kyra, then Jason, Jamal, Melissa,
Martin and Janine volunteered to present the solutions to the task that they and their
partner had created. Their solutions are shown in Figure 1.

During each presentation, Mr. Crane made sure to ask each presenter questions that
helped them to clarify and justify their work. He concluded the class by telling stu-
dents that the problem could be solved in many different ways and now, when they
solved a problem like this, they could pick the way they liked best because they all
gave the same answer.

To some, this lesson would be considered exemplary. Indeed Mr. Crane did
many things well, including allowing students to construct their own way of
solving this cognitively challenging task2 and stressing the importance of stu-
dents’ being able to explain their reasoning. However, a more critical eye might
have noted that the string of presentations did not build toward important mathe-
matical ideas. The upshot of the discussion appeared to be “the more ways of
solving the problem the better,” but, in fact, Mr. Crane only held each student
accountable for knowing one way to solve the problem. In addition, although
Mr. Crane observed students as they worked, he did not appear to use this time to
assess what students understood about proportional reasoning (Nelson, 2001;
Shifter, 2001) or to select particular students’ work to feature in the whole-class
discussion (Lampert, 2001; NCTM, 1991). And he gathered no information
regarding whether the two pairs of students who had gotten the wrong answer
(Darnell and Marcus, and Missy and Kate) were helped by the student presenta-
tions of correct strategies. Had they diagnosed the faulty reasoning underneath
their approaches?

Darnell and Marcus Missy and Kate
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318 STEIN ET AL.

In fact, we argue that much of the discussion in Mr. Crane’s classroom was
what Ball (2001) has called a “show and tell” in which students with correct
answers each take turns sharing their solution strategies (see also, Wood &
Turner-Vorbeck, 2001). There was little filtering by the teacher about which
mathematical ideas each strategy helped to illustrate, nor any attempt to highlight

FIGURE 1 Student Work Presented in the Hypothetical Classroom of Mr. Crane during the
Leaves and Caterpillar Vignette (Student Work from Smith, Hillen, & Heffernan, 2003).

Janine’s Work Kyra’s Work 

Jamal’s Work Martin’s Work 

Jason’s Work Melissa’s Work 
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ORCHESTRATING PRODUCTIVE MATHEMATICAL DISCUSSIONS 319

those ideas (Lampert, 2001; Schoenfeld, 1998). In addition, the teacher did not
draw connections among different solution methods or tie them to important dis-
ciplinary methods or mathematical ideas (Ball, 1993; Boaler & Humphries,
2005). Finally, there was no attention to weighing which strategies might be most
useful, efficient, accurate, and so on, in particular circumstances (Nathan &
Knuth, 2003). All were treated as equally good.

In short, providing students with cognitively demanding tasks with which to
engage and then conducting “show and tell” discussions cannot be counted on to
move an entire class forward mathematically. Indeed, this generation of practice
was eventually criticized for creating classroom environments in which near-
complete control of the mathematical agenda was relinquished to students (e.g.,
Ball, 1993, 2001; Chazen & Ball, 2001; Leinhardt, 2001). Some teachers went so
far as to misperceive the appeal to honor students’ thinking and reasoning as a
call for a complete moratorium on teacher shaping of the quality of students’
mathematical thinking. Due to the lack of guidance with respect to what teachers
could do to encourage rigorous mathematical thinking and reasoning, many
teachers were left feeling that they should avoid telling students anything (e.g.,
Baxter & Williams, in press; Chazen & Ball, 2001; Leinhardt, 2001; Lobato,
Clarke, & Ellis, 2005; Smith, 1996; Windschitl, 2002).

A related criticism concerned the fragmented and often incoherent nature of
the discuss-and-summarize phases of lessons. In these “show-and-tells,” as
exemplified in Mr. Crane’s classroom, one student presentation would follow
another with limited teacher (or student) commentary and no assistance with
respect to drawing connections among the methods or tying them to widely
shared disciplinary methods and concepts. There was no mathematical or other
reason for students to necessarily listen to and try to understand the methods of
their classmates. As illustrated in Mr. Crane’s comment at the end of the class,
students could simply “pick the way they liked best.” This led to an increasingly
recognized dilemma associated with inquiry- and discovery-based approaches to
teaching: the challenge of aligning students’ developing ideas and methods with
the disciplinary ideas that they ultimately are accountable for knowing (e.g.,
Brown & Campione, 1994).

In a widely cited article, “Keeping an Eye on the Mathematical Horizon,” Ball
(1993) argued that the field needed to take responsibility for helping teachers to
learn how to continually “size up” whether important mathematical ideas were
being developed in these discussions and be ready to step in and redirect the con-
versation when needed. Unfortunately, guidance for how to do this remains scant.
In this article, we join Ball (1993, 2001) and others (e.g., Gravemeijer, 2004;
Lampert, 2001; Nathan & Knuth, 2003; Nelson, 2001; Wood & Turner-Vorbeck,
2001) who are seeking to identify ways in which teachers can effectively guide
whole-class discussions of student-generated work toward important and worth-
while disciplinary ideas. We call this “second generation” practice and view it as
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320 STEIN ET AL.

a form of instruction that re-asserts the critical role of the teacher in guiding
mathematical discussions. The hallmark of second generation practice is its focus
on using student-developed work as the launching point of whole-class discus-
sions in which the teacher actively shapes the ideas that students produce to lead
them toward more powerful, efficient, and accurate mathematical thinking.

The literature now includes several compelling illustrations of what expert
facilitators commonly do and must know to facilitate mathematical discussions
that are, in the words of Ball (1993), accountable both to the discipline and to stu-
dents (Ball, 2001; Chazen & Ball, 2001; Lampert, 2001; Leinhardt & Steele,
2005; Sherin, 2002). However, research has also demonstrated the significant
pedagogical demands that are involved in orchestrating discussions that build on
student thinking in this manner (e.g., Ball, 2001; Brown & Campione, 1994;
Chazen & Ball, 2001; Lampert, 2001; Leinhardt & Steele, 2005; Schoenfeld,
1998; Sherin, 2002).

First, compared with presenting a lecture or conducting a recitation lesson in
which mathematical procedures are demonstrated, facilitating a discussion
around a task that can be solved in numerous ways greatly reduces teachers’
degree of control over what is likely to happen in a lesson (e.g., Chazen, 2000).
This can be particularly daunting for teachers who are new to discussion-based
pedagogy, reducing their sense of efficacy for supporting student learning
(Smith, 1996). In addition, many models of expert practice in the literature
feature extremely skilled discussion facilitators: teachers who—with apparent
ease—make rapid online diagnoses of students’ understandings, compare them
with desired disciplinary understandings, and then fashion an appropriate
response. For teachers new to discussions or to the particular curriculum in which
they are hoping to use them, achieving this level of improvisation can feel unat-
tainable (Borko & Livingston, 1989; Heaton, 2000; Schoenfeld, 1998; Sherin,
2002). Indeed, research has shown that successful improvisation requires an
extensive network of content knowledge, pedagogical knowledge, and knowl-
edge of students as learners that is interwoven, and which is often limited for
many teachers (e.g., Borko & Livingston, 1989; Margolinas, Coulange, &
Bessot, 2005; Sherin, 2002).

Thus, as with other areas of expertise (e.g., Bransford, Brown, & Cocking,
1999; White & Frederiksen, 1993), experts are incomplete guides for teachers
who want to learn how to become discussion facilitators (hereafter referred to as
novices). While experts can help teachers to see the power of discussions that
simultaneously honor both student thinking and a mathematical agenda, they
often portray effective discussion facilitation as dauntingly complex while not
addressing the novice’s desire for easy-to-implement “how-to’s” for learning
how to facilitate such discussions. Moreover, they do not address the fact that
novices have different knowledge bases than experts that affect the practices they
can implement effectively. Without the expert’s reservoir of knowledge about

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
D

av
is

] 
at

 1
0:

02
 1

4 
M

ar
ch

 2
01

4 



ORCHESTRATING PRODUCTIVE MATHEMATICAL DISCUSSIONS 321

how to relate student responses to important mathematical content, novices cannot
improvise their way through such discussions as experts do (Schoenfeld, 1998).
Without solid expectations for what is likely to happen, novices are regularly sur-
prised by what students say and do, and therefore often do not know how to
respond to students in the midst of a discussion. They feel out of control and
unprepared, which then reduces their efficacy as teachers, making discussion-
based pedagogy a lot less attractive (Smith, 1996).

Instead, we argue that novices need a set of practices they can do to both pre-
pare them to facilitate discussions (Ghousseini, 2007; Lampert, 2007) and help
them gradually and reliably learn how to become better discussion facilitators
over time (Fernandez & Yoshida, 2004; Hiebert, Morris, & Glass, 2003; Stigler
& Hiebert, 1999). We propose our model of the five practices as one such tool,
which is designed specifically for whole-class discussions that are conducted
after students work on high-level cognitively-challenging tasks (Stein et al.,
2000).

FIVE PRACTICES FOR FACILITATING MATHEMATICAL 
DISCUSSIONS AROUND COGNITIVELY DEMANDING TASKS

In our model of five practices for discussion facilitation, the intent is to make dis-
cussion facilitation something that is manageable for novices, those teachers who
are new to this form of teaching. We do this by purposely de-emphasizing the
improvisational aspects of discussion facilitation in favor of a focus on those
aspects of mathematical discussions that can be planned for in advance
(cf. Fennema & Franke, 1992; Gravemeijer, 2004). Through planning, teachers
can anticipate likely student contributions, prepare responses they might make to
them, and make decisions about how to structure students’ presentations to
further their mathematical agenda for the lesson. By expanding the time to make
an instructional decision from seconds to minutes (or even hours) our model
allows increasing numbers of teachers to feel—and actually be—better prepared
for discussions.

Specifically, the five practices are: (1) anticipating likely student responses to
cognitively demanding mathematical tasks, (2) monitoring students’ responses to
the tasks during the explore phase, (3) selecting particular students to present
their mathematical responses during the discuss-and-summarize phase, (4) pur-
posefully sequencing the student responses that will be displayed, and (5) helping
the class make mathematical connections between different students’ responses
and between students’ responses and the key ideas. Each practice has been dis-
cussed separately by various authors; our contribution here is to integrate them
into a single package. As shown in Figure 2, we view each of the practices as
drawing on the fruits of the practices that came before it. For example, teachers’
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monitoring of students work during the explore phase will benefit from their pre-class
preparation of anticipating how students might approach the tasks. Similarly, the
practice of selecting particular students to present their work will benefit from
careful monitoring of the range of responses that students produce during the
explore phase. In addition, successfully using the five practices depends on
implementing a cognitively demanding instructional task with multiple possible
responses and having well-defined instructional goals, both of which are sup-
ported by teachers’ understanding of their students’ current mathematical thinking
and practices.

Together, we feel these practices help make it more likely that teachers will be
able to use students’ responses to advance the mathematical understanding of the
class as a whole. Each practice is described in more detail below, with the example
of Mr. Crane’s discussion illustrating how each could have contributed to a more
productive mathematical discussion in his class.

Anticipating Students’ Mathematical Responses

The first practice is for teachers to make an effort to actively envision how stu-
dents might mathematically approach the instructional tasks(s) that they will be
asked to work on (e.g., Fernandez & Yoshida, 2004; Lampert, 2001; Schoenfeld,
1998; Smith, 1996; Stigler & Hiebert, 1999). This involves much more than simply
evaluating whether a task will be at the right level of difficulty or of sufficient
interest to students, and it goes beyond considering whether they are likely to get
the “right answer.” Anticipating students’ responses involves developing consid-
ered expectations about how students might mathematically interpret a problem,

FIGURE 2 Schematic Diagrams of the Five Practices in which Each Practice Depends on
the Practices Embedded within it.

Anticipating

Monitoring

Selecting

Sequencing

Connecting

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
D

av
is

] 
at

 1
0:

02
 1

4 
M

ar
ch

 2
01

4 



ORCHESTRATING PRODUCTIVE MATHEMATICAL DISCUSSIONS 323

the array of strategies—both correct and incorrect—they might use to tackle it,
and how those strategies and interpretations might relate to the mathematical
concepts, representations, procedures, and practices that the teacher would like
his or her students to learn (Lampert, 2001; Schoenfeld, 1998; Yoshida, 1999,
cited in Stigler & Hiebert, 1999).

Consider how using the practice of anticipating might have affected the nature
of discussion in Mr. Crane’s class. Table 1 shows the variety of strategies that
students might use to solve the Caterpillar and Leaves problem (first column);
the names of the students whose work illustrated those strategies, including the
representation they used (second column); and how the strategies relate to one
another (third column).

As shown in the first two columns of the first row, anticipation would have
enabled Mr. Crane to recognize that the response given by Missy and Kate
reflects a common misconception that students of this age have with respect to
proportionality: they identify the relationship between the quantities, here the
numbers of caterpillars and leaves, as additive rather than multiplicative (e.g.,
Cramer, Post, & Currier, 1993; Hart, 1988; Noelting, 1980). Anticipating this in
advance would have made it possible for Mr. Crane to have a question ready to
ask or an activity that the students could do that might have helped them and
other students recognize why this approach, though tempting, does not make
sense.

Anticipation requires that teachers, at a minimum, actually do the mathemati-
cal tasks that they are planning to ask their students to do. However, rather than
finding a single strategy to solve a problem, teachers need to devise and work
through as many different solution strategies as they can. Moreover, if they put
themselves in the position of their students while doing the task, they can antici-
pate some of the strategies that students with different degrees of mathematical
sophistication are likely to produce and consider ways that students might misin-
terpret problems or get confused along the way, as some of Mr. Crane’s students
did. Each time they use a task, teachers can add to their fund of knowledge about
likely student responses.

In addition to drawing on their knowledge of their particular students’ mathe-
matical skills and understandings, teachers might draw on their knowledge of the
research literature about typical student responses to the same or similar tasks or
of common student understandings of related concepts and procedures (e.g.,
Fennema et al., 1996) . The practice of anticipating student responses can be fur-
ther supported when teachers use mathematics curricula that include typical stu-
dent responses to problems, as is done in many Japanese curricula (Fernandez &
Yoshida, 2004; Schoenfeld, 1998; Stigler & Hiebert, 1999) and in some American
curricula (e.g., Russell, Tierney, Mokros, & Economopoulos’ 2004, Investiga-
tions in Number, Data, and Space). In addition, there is a growing library of writ-
ten and video cases of mathematics teaching designed for teachers that often
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include extensive information about student responses to the instructional tasks
that are the basis of the lessons in the cases (e.g., Barnett, Goldstein, & Jackson,
1994; Boaler & Humphries, 2005; Smith, Silver, Stein, Boston, & Henningsen,
2005; Smith, Silver, Stein, Boston, Henningsen, & Hillen, 2005; Smith, Silver,
Stein, Henningsen, Boston, & Hughes, 2005; Stein et al., 2000). Building on such
preexisting resources provides especially helpful scaffolding for teachers who are
new to conducting whole-class discussions around cognitively demanding math-
ematical tasks.

Monitoring Student Responses

Monitoring student responses involves paying close attention to the mathematical
thinking in which students engage as they work on a problem during the explore
phase (e.g., Brendehur & Frykholm, 2000; Lampert, 2001; Nelson, 2001;
Schoenfeld, 1998; Shifter, 2001). This is commonly done by circulating around
the classroom while students work (e.g., Baxter & Williams, in press; Boerst &
Sleep, 2007; Lampert, 2001). The goal of monitoring is to identify the mathematical
learning potential of particular strategies or representations used by the students,
thereby honing in on which student responses would be important to share with
the class as a whole during the discussion phase (Brendehur & Frykholm, 2000;
Lampert, 2001). For example, rather than only noting how many students are
actually working on the problem or who seems to be frustrated, teachers should
also attend to the mathematical ideas that are in play in their work and talk. That
is, teachers should actively attend to the mathematics within what students are
saying and doing, assess the mathematical validity of students’ ideas, and make
sense of students’ mathematical thinking even when something is amiss (Nelson,
2001; Shifter, 2001).

Those teachers who have made a good faith effort during initial planning to
anticipate how students might respond to a problem will feel better prepared to
monitor what students actually do during the explore phase (Lampert, 2001;
Schoenfeld, 1998). Still, this can be challenging, especially if the strategies or
representations used by students are unfamiliar to the teacher (Ball, 2001;
Crespo, 2000; Shifter, 2001; Wallach & Even, 2005). One way to manage the
challenge is for teachers to jot down notes about the particular approaches and
reasoning strategies that students are using. In addition, some tasks involve
manipulatives, representations, response sheets, or computer-based records that
make it possible to identify students’ strategies by visually examining what they
have done with these materials. In other cases, teachers can assess students’
mathematical thinking by listening to a group’s conversations as they work, making
sure to hear “below the surface” features of students’ talk and representations so
as to see the mathematical promise in what students are doing and thinking, and
by asking students probing questions. It is also important for teachers to ask
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questions that will help them assess students’ mathematical thinking—in particular
students’ understanding of key concepts that relate to the goal of the lesson. Such
monitoring is further supported when students have been taught representational
or communicative practices that will make their mathematical thinking more
accessible to others (e.g., see Lampert, 2001).

Returning to the Leaves and Caterpillars Vignette, we note that while Mr.
Crane did circulate around the classroom and understood both who had and had
not gotten correct answers and that a range of representations (tables, pictures,
etc.) had been used, the lack of organization of his sharing at the end of the class sug-
gests he had not monitored the specific mathematical learning potential available in
any of the students’ responses. For example, Mr. Crane did not recognize (or at
least make use of) the fact that both Kyra’s and Janine’s solutions were based on
the concept of unit rate (see row 4 of Table 1) as they figured out that each cater-
pillar eats 2.5 leaves per day, while Jason’s solution made use of the concept of a
scale factor (see row 5 of Table 1) when he reasoned that because the number of
caterpillars scaled up by a factor of 6, the number of leaves also would have to
scale up by this same multiplicative factor (Cramer & Post, 1993; Lesh, Post, &
Behr, 1988). Knowing this would have allowed Mr. Crane to have the class gen-
eralize from these students’ approaches to introduce these key mathematical
ideas about proportionality to the class.

In general, by taking time during the explore phase to monitor the mathematical
basis behind students’ responses, Mr. Crane would have had more information on
which to guide his instructional decisions during the whole class discussion and
beyond. In addition, working to understand students’ solutions as much as possible
during the explore phase would have give him minutes rather than simply sec-
onds to decide how to respond to students’ mathematical ideas during the discus-
sion. Finally, as we will now discuss, Mr. Crane and other teachers can use the
information that they obtain about student thinking during monitoring to plan
which responses they will feature in the ensuing class discussion. As Lampert
(2001, p. 140, emphasis ours) summarized it, “If I watch and listen during small-
group independent work, I am then able to use my observations to decide what
and who to make focal” during whole-class discussion.

Purposefully Selecting Student Responses for Public Display

Having monitored the available student responses in the class, the teacher can
then select particular students to share their work with the rest of the class in
order to get “particular piece[s] of mathematics on the table” (Lampert, 2001,
p. 146; also see Stigler & Hiebert, 1999). A typical way to do this is to call on
specific students (or groups of students) to present their work as the discussion
proceeds. Alternatively, a teacher might ask for volunteers but then select a par-
ticular student that he or she knows is one of several who has a particularly useful
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idea to share with the class. This is one way of balancing the tension between
“keeping the discussion on track and allowing students to make spontaneous con-
tributions that they consider … to be relevant” (Lampert, 2001, p. 174). Still, in
all these methods of selecting, the teacher remains in control of which students
present their strategies, and therefore what the mathematical content of the dis-
cussion will likely be.

Returning to the Leaves and Caterpillar Vignette, if we look at the strategies
that were shared, we noted earlier that both Kyra and Janine had similar strate-
gies that used the idea of a unit rate (see row 4, Table 1). Given that, there may
not have been any added value for students’ mathematical learning in having
both be shared. In fact, if Mr. Crane wanted the students to see the multiplicative
nature of the relationship between the leaves and caterpillars (Vergnaud, 1988),
he might have selected Jason (see row 5, Table 1) to present his strategy as it
most clearly involved multiplication.

Rather than placing the class and the teacher at the mercy of whatever strategies
student volunteers might present, the purposeful selection of presenters makes it
more likely that important mathematical ideas will be discussed by the class. The
teacher selects students to present whose strategies depend on those ideas, allowing
the ideas to be illustrated, highlighted, and then generalized. Teachers can also
ensure that common misconceptions are aired publicly, are understood, and are
corrected by selecting students like Missy and Kate to present strategies and relying
on them so that the class as a whole can then examine them in order to under-
stand why and how the reasoning does not work (Confrey, 1990). And, if neces-
sary, a teacher can introduce a particularly important strategy that no one in the
class has used by sharing the work of students from other classes (e.g., Boaler &
Humphreys, 2005; Schoenfeld, 1998) or offering one of his or her own for the
class to consider (e.g., Baxter & Williams, in press). Another way that teachers
can increase the repertoire of strategies available for public sharing is to offer
instructional support during the explore phase to students who appear to be on
the verge of implementing a unique and important approach to solving the prob-
lem, but who need some help to be able to actually achieve that and effectively
share it with their classmates.

At the same time that care is taken to have certain responses publicly aired,
other responses might be avoided altogether or presented at a later point in time
when the class can more effectively deal with them (Schoenfeld, 1998). Simi-
larly, a response that is important but unexpected by the teacher can be delayed
from consideration until a later class when the teacher has had more time to think
about the mathematics underlying that response (Engle, 2004). Such revisiting of
students’ work and the ideas behind it is a particularly effective tool for newer
teachers who can then consult with their colleagues, teacher education instruc-
tors, curriculum materials, and other resources for deepening their understanding
of the mathematics that they are teaching and how students tend to think about it.
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It is important, however, that teachers do not simply use the technique of
selecting to avoid dealing with those students or mathematical ideas that they
have more difficulty teaching. One way to avoid this is for teachers to regularly
review their monitoring notes to identify any patterns in who was called on and
who was not, and which ideas were discussed and which were not. Teachers can
then adjust their future practices accordingly, preparing to make and take up
opportunities to select those students and ideas that have not gotten as much con-
sideration as they should have.

Purposefully Sequencing Student Responses

Having selected particular students to present, the teacher can then make deci-
sions about how to sequence the students’ presentations with respect to each
other (Schoenfeld, 1998; West, 1994). By making purposeful choices about the
order in which students’ work is shared, teachers can maximize the chances that
their mathematical goals for the discussion will be achieved. For example, the
teacher might want to have the strategy used by the majority of students
presented before those that only a few students used to help validate the work
that students did and make the beginning of the discussion accessible to as many
students as possible (West, 1994). This can allow students to build a depth of
understanding of the problem that will be helpful later for making sense of more
unique or complex solution strategies. Similar benefits can be had by starting a
discussion with a particularly easy-to-understand strategy like Mr. Crane could
have done with Martin’s picture, which concretely depicted how the number of
leaves and caterpillars increased proportionally.

Another possibility for sequencing is to begin with a common strategy that is
based on a misconception that several students had so the class can clear up that
misunderstanding in order to be able to work on developing more successful
ways of tackling the problem (for an example of this in action see “The Case of
Marie Hanson” in Smith, Silver, Stein, Boston, Henningsen, & Hillen, 2005). For
example, there might have been some payoff for Mr. Crane in first sharing the
solution produced by Missy and Kate and then following it with the solution pro-
duced by Melissa, who also used addition but did so in a way that preserved pro-
portionality between the quantities.

In addition, the teacher might want to have related or contrasting strategies be pre-
sented right after one another to make it easier for the class to mathematically com-
pare them. For example, in his mathematical problem-solving course, Schoenfeld
(1998, p. 68) sometimes had students discuss particular problem solving
approaches not “in the order that they had been generated, but in an order
that allow[s] various mathematical ‘lessons’ to emerge more naturally from the
discussions.” In the case of Mr. Crane’s discussion, here is one reasonable
sequencing that he might have considered using:
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1. Martin: picture (scaling up–replicating sets)
2. Jamal: table (scaling up–growing the ratio)
3. Janine: picture and written explanation (unit rate)
4. Jason: written explanation (scale factor)

This sequencing begins with two different but relatively easy-to-understand scaling
up strategies and ends with a fairly sophisticated scale factor strategy, which
would likely support the goal of accessibility. In addition, by having the same
relatively accessible strategy—scaling up—be presented with two different rep-
resentations, this could support the goal of helping students to better understand
this particular strategy and the relationship between these representations, in this
case a model of the problem situation in Martin’s picture and Jamal’s somewhat
more abstract tabular representation.

Thus, rather than being at the mercy of when students happen to contribute an
idea to a discussion, teachers can select students to present in a particular
sequence to make a discussion more mathematically coherent and predictable.
However, as our list of possible sequences that Mr. Crane might have used indi-
cated, much more research needs to be done to compare these and other possible
sequencing methods with each other in order to understand what each best con-
tributes. However, it is clear that as with the other four practices, what particular
sequence teachers choose to use should depend crucially on both teachers’
knowledge of their students and their particular instructional goals.

Connecting Student Responses

Finally, teachers can help students draw connections between the mathematical
ideas that are reflected in the strategies and representations that they use (e.g.,
Ball, 2001; Boaler & Humphreys, 2005; Brendehur & Frykholm, 2000). They
can help students make judgments about the consequences of different
approaches for the range of problems that can be solved, one’s likely accuracy
and efficiency in solving them, and the kinds of mathematical patterns that can be
most easily discerned. They also can help students see how the same powerful
idea (e.g., there is a multiplicative relationship between quantities in a ratio) can
be embedded in two strategies that on first glance look quite dissimilar (e.g., one
performed using a picture/written explanation, another with a table; as in Janine’s
and Jamal’s work in Figure 2). So, rather than having mathematical discussions
consist of separate presentations of different ways to solve a particular problem,
the goal is to have student presentations build on each other to develop powerful
mathematical ideas.

Returning to Mr. Crane’s class, after having students compare and contrast the
use of scaling up in Martin’s picture and Jamal’s table, Mr. Crane might consider
comparing Jamal and Janine’s responses. As shown in Table 1, Janine’s unit rate
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of 2.5 can be discerned in Jamal’s table by dividing the entry in the number of
leaves column by the entry in the number of caterpillars column. This would help
students to generalize the concept of a unit rate as something that can be seen
across multiple mathematical representations. Similarly, Mr. Crane’s students
could be asked to compare Jason’s work with both Jamal’s and Martin’s to see
that Jason’s scale factor of 6 is the same as the number of sets constructed by
Martin and the number of entries in Jamal’s table. Using Jamal’s table as a basis,
it could become increasingly clear to students the ways in which unit rates and
scale factors differ from but still relate to each other in a proportional situation. In
general, if Mr. Crane’s instructional goal for this lesson was having students flexibly
understand different approaches—scale factor, scaling up, and unit rate—then
having the students identify each of these ideas in each representation would be
an especially worthwhile kind of connection that could be made.

However, there are many different ways that teachers might help a class
draw connections besides what we have specifically suggested for Mr. Crane’s
lesson. In the transition between two students’ presentations, a teacher can
allude to some of the ways that the two students’ strategies and mathematical
ideas might be similar to or different from each other in the types of representa-
tions, operations, and concepts that were used (Hodge & Cobb, 2003). Or
teachers can ask students to identify what is similar or different in the two pre-
sentations. All of these ways of helping students to connect their mathematical
responses with each other can help make discussions more coherent. At the
same time, doing this can prompt students to reflect on other students’ ideas
while evaluating and revising their own (Brendehur & Frykholm, 2000; Engle
& Conant, 2002).

Finally, teachers could plan additional lessons in which the demands of the
task might increase. For example, they may want to alter the initial problem to
discuss issues of efficiency and how different strategies may be best suited for
different problems. For example, students could be asked to determine how
many leaves would be needed each day for 50 or 100 caterpillars. While all of
the strategies used to correctly solve the initial problem may be considered rea-
sonable (given the relatively small numbers involved), strategies such as ones
used by Kyra, Martin, and Melissa become much less efficient as the numbers
increase. Similarly, the teacher may want to alter the problem so the unit rate
is more difficult to use (e.g., If 5 caterpillars eat 13 leaves then how many
leaves will 100 caterpillars eat?). In this case, the approach used by Janine and
Kyra might be more difficult since each caterpillar is now eating 26/10 leaves
per day—a much more difficult fraction part to work with, while the approach
used by Jason, finding the scale factor, would be much easier since it is an inte-
ger. Ultimately, the teacher may want to ask questions that require more flexi-
ble use of knowledge such as, “How many caterpillars could eat for a day on
100 leaves?”
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GROUNDING OF THE FIVE PRACTICES IN A THEORY FOR 
PROMOTING PRODUCTIVE DISCIPLINARY ENGAGEMENT

In this section, we step back from the example of Mr. Crane’s class to further
explore the conceptual grounding of the five practices. We do so by situating
them in a theoretical frame that addresses how productive disciplinary engage-
ment can be supported in the classroom (Engle & Conant, 2002).

Since the advent of more student-centered, inquiry-based forms of instruc-
tional practice, teachers have struggled with how to orchestrate discussions in
ways that both engage students’ sense-making in authentic ways and move the
class as a whole toward the development of important and worthwhile ideas in
the discipline. Two norms that teachers can embody in their classrooms to
address this challenge are student authority and accountability to the discipline
(Engle & Conant, 2002). The idea behind student authority is that learning envi-
ronments should be designed so that students are “authorized” to solve mathe-
matical problems for themselves, are publicly credited as the “authors” of their
ideas, and develop into local “authorities” in the discipline (see also Hamm &
Perry, 2002; Lampert, 1990b; Scardamalia, Bereiter, & Lamon, 1994; Wertsch &
Toma, 1995). A learning environment embodying the norm of accountability to
the discipline regularly encourages students to account for how their ideas make
contact with those of other mathematical authorities, both inside and outside the
classroom (see also Boero et al., 1998; Cobb, Gravemeijer et al., 1997; Lampert,
1990a; Michaels et al., 2002).

At the heart of the challenge associated with student-centered practice is the
need to strike an appropriate balance between giving students authority over their
mathematical work and ensuring that this work is held accountable to the disci-
pline. Nurturing students’ mathematical authority depends on the opportunity for
students to publicly engage in the solving of real mathematical problems,
actively grapple with various strategies and representations that they devise to
make headway on the problems, and judge the validity and efficacy of their
own approaches themselves (Engle & Conant, 2002; Hiebert et al., 1996). A
launch-explore-discuss lesson structure that uses cognitively demanding tasks
with more than one valid mathematical solution strategy tends to be very effec-
tive at supporting students’ authority. Individually and in small groups students
have opportunities to solve problems in their own ways and then they become
recognized as the authors of those approaches as they share them in small groups
and with the class as a whole.

However, at the same time, the teacher must move students collectively
toward the development of a set of ideas and processes that are accountable to the
discipline—those that are widely accepted as worthwhile and important in
mathematics as well as necessary for students’ future learning of mathematics
in school. Otherwise, the balance tips too far toward student authority and classroom
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discussions make insufficient contact with disciplinary understandings. Unfortu-
nately, there is nothing in the launch-explore-discuss lesson structure in and of
itself that particularly engenders such accountability as examples of “show and
tell” style discussions like the Leaves and Caterpillar Vignette demonstrate.

On the other hand, efforts to encourage students to be accountable to the discipline
can easily lead teachers to unwittingly undermine students’ authority and
engaged sense-making (e.g., Elmore, Peterson, & McCarthy, 2000; Engle &
Faux, 2006; Hamm & Perry, 2002). This may have happened in Mr. Crane’s
class if he continued to limit student presentations just to those that reached the
correct answer. This would have sent the message to students that strategies need
to be validated by the teacher deciding to select them for presentation rather than
through a process of mathematical reasoning in which students can participate.
Similarly, teachers who do allow the discussion of incorrect strategies may still
undermine students’ authority to evaluate the sensibleness of their and others’
ideas when they give subtle cues to their evaluations through differences in
pauses, facial expressions, elaboration, and questioning of student responses of
different levels of quality. In such cases, students tend to no longer report what
they actually think about a problem, but instead what they believe their teachers
will respond favorably to. Other teachers, concerned when their students reveal
misunderstandings, often find it difficult to resist the temptation to directly cor-
rect students’ answers, which can further undermine students’ mathematical
authority for using their own mathematical reasoning to evaluate the sensibleness
of their own and others’ ideas.

The model described herein supports accountability to the discipline without
undermining students’ mathematical authority through a set of teaching practices
that take students’ ideas as the launching point, but shape class discussions so that
over time important mathematical ideas are surfaced, contradictions exposed, and
understandings developed or consolidated. Building on the resources provided by
a variety of student responses to cognitively demanding tasks, the teacher selects
particular responses to be discussed in a particular order that will support his or
her instructional goals for students’ mathematical development.

While explicit and tractable to the teacher, these practices and their impact on
the shape of discussions are largely invisible to students. Students do not see
teachers doing their anticipating work in advance of the lesson, they do not know
exactly what they are doing while circulating around the room, and they may not
be fully aware of the basis behind teachers’ decisions about which strategies to
have presented and in which order. Thus, these teacher actions do not untowardly
impinge on students’ own growing mathematical authority in the ways that
teacher hints and corrections do. It is students’ ideas that provide the fodder for
discussions, with students publicly serving as the primary evaluators of them. At
the same time, careful selection and steering has been done by the teacher—mostly
under the radar—to move the class discussion in particular, mathematically
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productive directions. Thus, students can experience the magic of learning
through interaction and communication with their peers, the exhilaration of co-
constructing something new, and the payoff that comes from sustained listening
and thinking in a concentrated and focused manner. At the same time, the disci-
pline of mathematics has been represented through the teacher’s wise selection of
student ideas to discuss in a particular order and by prompts for students to make
important mathematical connections between them.

MAKING MATHEMATICAL DISCUSSIONS MORE 
MANAGEABLE FOR TEACHERS

The premise underlying this article is that the identification and use of the five
practices can make student-centered approaches to mathematics instruction more
accessible to and manageable for more teachers. By giving teachers a roadmap of
things that they can do in advance and during whole-class discussions, these
practices have the potential for helping teachers to more effectively orchestrate
discussions that are responsive to both students and the discipline. While the dis-
cussion herein featured an example from a fourth-grade classroom, the model we
are proposing can be used by teachers at all levels K–12 and by teacher educators
who are engaging their students in the discussion of a cognitively challenging
mathematical task.

In addition, we argue that the five practices can also help teachers gain a
sense of efficacy over their instruction (Smith, 1996) as they learn that there are
ways for them to reliably shape students’ discussions. In addition, teachers can
be confident that each time that they use the five practices with a particular task,
the discussion based on that task is likely to get more mathematically sophisti-
cated. In fact, we have encouraged teachers to think about the five practices as a
method for slowly improving the quality of discussions over time as their reser-
voir of experiences with specific tasks grows. For example, the first time a
teacher uses a particular instructional task, he or she may focus on anticipating
and monitoring in order to learn more about how his or her students tend to
respond to the task and what mathematical ideas can be brought forth from
students’ responses. The second time around the teacher can use that information
to make judicious choices about which approaches to be sure to select for class
discussion. In later lessons, the teacher can use the information gathered in the
previous go-arounds to begin developing effective methods of sequencing and
connecting. Thus, over time a teacher’s facilitation of a discussion around a
particular task can improve, with the speed of progress accelerating if he or she
works with other teachers, makes use of resources from research and curriculum
materials, and consistently builds on records of what he or she observed and
learned during each effort.
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The five practices should not be viewed as a “stand-alone” remedy for
the improvement of mathematics instruction. Rather they are one—albeit an
important—component of effective pedagogical practice. As such, the practices
need to be embedded in classroom norms that support inquiry learning, including
respect for others’ efforts and valuing the processes involved in mathematical
argumentation.

The practices are also not a comprehensive prescription for mathematics
learning. Learning mathematics well results from engagement in a sequence of
carefully planned and orchestrated lessons, in addition to polishing the peda-
gogy surrounding individual tasks. As Hiebert and colleagues (1997, p. 31)
have argued, “Teachers need to select sequences of tasks, so that, over time,
students’ experiences add up to something important.” While our focus here is
on preparing for and carrying out a single discussion, we recognize that such
discussions must be viewed as part of a larger, coherent, and comprehensive
curriculum.

Thus, the five practices do not provide an instant fix for mathematics instruc-
tion. Instead, they provide something much more important: a reliable process
that teachers can depend on to gradually improve their classroom discussions
over time. Along with others, we are coming to believe that the most practical
visions for deeply and pervasively reforming mathematics teaching are those that
support such slow and steady progress (Fernandez & Yoshida, 2004; Hiebert
et al., 2003; Stigler & Hiebert, 1999), and we offer the five practices here as one
helpful tool for realizing that vision for classroom discussions.

NOTES

1. This vignette is a composite of one type of discussion that we have regularly observed in mathe-
matics classrooms using cognitively demanding tasks. Although constructed around actual student
work (Smith, Hillen, & Heffernan, 2003), the specific events are hypothetical. However, the pur-
pose of the vignette is not to serve as data but instead to illustrate our ideas while illuminating
their practical import.

2. The Leaves and Caterpillars task is cognitively demanding for fourth graders as evidenced
by both assessment results and an analysis of the task according to the Mathematical Tasks
Framework (Stein, Smith, Henningsen, & Silver, 2000). In the seventh administration of
National Assessment of Educational Progress (NAEP), only 6% of fourth graders gave a correct
answer with a correct explanation to this task, while another 7% either gave a correct answer within
an explanation or showed a correct method with a computational error (Kenney & Linquist, 2000).
Most of the students (86%) gave an incorrect response. From the perspective of the Mathematical
Tasks Framework, this task was implemented as a higher-level “Doing Mathematics” task most
notably because “there is not a predictable, well-rehearsed approach or pathway explicitly sug-
gested by the task, task instructions, or a worked-out example,” the task “requires students to
access relevant knowledge and experiences and make appropriate use of them,” and Mr. Crane
required students to mathematically justify their solution methods (Stein, Smith, Henningsen, &
Silver, 2000, p. 16; see also Engle & Adiredja, 2008).
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WARM UP PROBLEM 
 

A fourth-grade class needs five leaves each day to feed 
its 2 caterpillars.  How many leaves would the students 
need each day for 12 caterpillars? 
 
Use drawings, words, or numbers to show how you got 
your answer. 
 
•  Please try to do this problem in as many ways as 

you can,  both correct and incorrect 

•  If done, share your work with a neighbor or look 
at the student work back side of the handout. 



5 Practices for Orchestrating 
Productive Mathematical 

Discussions   
  
 
 

Peg Smith 
University of Pittsburgh 

 

 
 
 

 

Elementary Mathematics Specialists and Teacher Leaders Project 
November 18, 2011 

 



The Importance of Discussion 

Mathematical discussions are a key part of 
current visions of effective mathematics 
teaching  
•  To encourage student construction of 

mathematical ideas 
•  To make student’s thinking public so it can be 

guided in mathematically sound directions 
•  To learn mathematical discourse practices 



Overview 

l  Analyze an instructional episode that will provide 
a basis for talking about classroom discussions  

l  Describe 5+ practices that you can learn in order 
to facilitate discussions more effectively and  
ground each in the instructional episode 

 
l  Discuss how the 5 practices could help improve 

teaching 



Overview 

l  Analyze an instructional episode that will provide 
a basis for talking about classroom discussions  

l  Describe 5+ practices that you can learn in order 
to facilitate discussions more effectively and  
ground each in the instructional episode 

 
l  Discuss how the 5 practices could help improve 

teaching 



Leaves and Caterpillar Vignette 
 
 
 

  

     

 

 

•  What aspects of Mr. Crane’s instruction 
would you want him to see as promising 
(reinforce)? 

•  What aspects of Mr. Crane’s instruction 
would you want to help him to work on (i.e., 
refine)? 



Leaves and Caterpillar Vignette 
What is Promising 

l  Students are working on a mathematical task that 
appears to be both appropriate and worthwhile 

l  Students are encouraged to provide explanations 
and use strategies that make sense to them 

l  Students are working with partners and publicly 
sharing their solutions and strategies with peers 

l  Students’ ideas appear to be respected 



Leaves and Caterpillar Vignette 
What Can Be Improved 
l  Beyond having students use different strategies, Mr. 

Crane’s goal for the lesson is not clear 
l  Mr. Crane observes students as they work, but does 

not use this time to assess what students seem to 
understand or identify which aspects of students’ 
work to feature in the discussion in order to make a 
mathematical point 

l  There is a “show and tell” feel to the presentations 
l  not clear what each strategy adds to the discussion 
l  different strategies are not related 
l  key mathematical ideas are not discussed 
l  no evaluation of strategies for accuracy, efficiency, etc. 

 
 



Some Sources of the Challenge 
in Facilitating Discussions 

•  Lack of familiarity 

•  Reduces teachers’ perceived level of control 

•  Requires complex, split-second decisions 

•  Requires flexible, deep, and interconnected 
knowledge of content, pedagogy, and 
students 



Purpose of the Five Practices 

 To make student-centered instruction more 
manageable by moderating the degree of 
improvisation required by the teachers and 
during a discussion. 



Overview 

l  Analyze an instructional episode that will provide 
a basis for talking about classroom discussions  

l  Describe 5+ practices that you can learn in order 
to facilitate discussions more effectively and  
ground each in the instructional episode 

 
l  Discuss how the 5 practices could help improve 

teaching 



1.  Anticipating (e.g., Fernandez & Yoshida, 2004; Schoenfeld, 1998) 

2.  Monitoring (e.g., Hodge & Cobb, 2003; Nelson, 2001; Shifter, 2001) 

3.  Selecting (e.g., Lampert, 2001; Stigler & Hiebert, 1999) 

4.  Sequencing (e.g., Schoenfeld, 1998)  

5.  Connecting (e.g., Ball, 2001; Brendehur & Frykholm, 2000) 

        	



The Five Practices (+) 
 



0.  Setting Goals and Selecting Tasks 

1.  Anticipating (e.g., Fernandez & Yoshida, 2004; Schoenfeld, 1998) 

2.  Monitoring (e.g., Hodge & Cobb, 2003; Nelson, 2001; Shifter, 2001) 

3.  Selecting (e.g., Lampert, 2001; Stigler & Hiebert, 1999) 

4.  Sequencing (e.g., Schoenfeld, 1998)  

5.  Connecting (e.g., Ball, 2001; Brendehur & Frykholm, 2000) 

        	



The Five Practices (+) 
 



01. Setting Goals 
•  It involves: 

•  Identifying what students are to know and understand 
about mathematics as a result of their engagement in 
a particular lesson  

•  Being as specific as possible so as to establish a clear 
target for instruction that can guide the selection of 
instructional activities and the use of the five practices  

•  It is supported by: 
•   Thinking about what students will come to know and 

 understand rather than only on what they will do 
•   Consulting resources that can help in unpacking  big   

 ideas in mathematics 
•   Working in collaboration with other teachers 



 
Mr. Crane’s Class 
Implied Goal 

 Students will be able to solve the task correctly using 
one of a number of viable strategies and realize that 
there are several different and correct ways to solve the 
task. 

Possible Goals 
l  Students will recognize that the relationship between 

quantities is multiplicative not additive – that the 2 quantities 
(leaves and caterpillars) need to grow at a constant rate. 

l  Student will recognize that there are three related strategies 
for solving the task – unit rate, scale factor and scaling up. 
  

 
 
 



02. Selecting a Task 

•  It involves: 
•  Identifying a mathematical task that is aligned with the 

lesson goals  
•  Making sure the task is rich enough to support a 

discussion (i.e., a cognitively challenging mathematical 
task) 

•  It is supported by: 
•  Setting a clear and explicit goal for learning 
•  Using the Task Analysis Guide which provides a list 

of characteristics of tasks at different levels of 
cognitive demand 

•  Working in collaboration with colleagues 



Memorization

• involve either reproducing previously learned facts, rules, formulae
  or definitions OR committing facts, rules, formulae or definitions to
  memory.

• cannot be solved using procedures because a procedure does not 
  exist or because the time frame in which the task is being completed 
  is too short to use a procedure.

• are not ambiguous.  Such tasks involve exact reproduction of 
  previously-seen material and what is to be reproduced is clearly and 
  directly stated. 

• have no connection to the concepts or meaning that underlie the 
  facts, rules, formulae or definitions being learned or reproduced. 

Procedures Without Connections

• are algorithmic.  Use of the procedure is either specifically called 
  for or its use is evident based on prior instruction, experience, or 
  placement of the task.

• require limited cognitive demand for successful completion.  There
  is little ambiguity about what needs to be done and how to do it.

• have no connection to the concepts or meaning that underlie the 
  procedure being used.

• are focused on producing correct answers rather than developing 
  mathematical understanding.
  
• require no explanations or explanations that focuses solely on 
  describing the procedure that was used.  

• require complex and non-algorithmic thinking (i.e., there is not a 
  predictable, well-rehearsed approach or pathway explicitly 
  suggested by the task, task instructions, or a worked-out example).  

•  require students to explore and understand the nature of 
   mathematical concepts, processes, or relationships.

• demand self-monitoring or self-regulation of one's own cognitive 
  processes.  

• require students to access relevant knowledge and experiences and 
  make appropriate use of them in working through the task.

• require students to analyze the task and actively examine task 
  constraints that may limit possible solution strategies and solutions.  

• require considerable cognitive effort and may involve some level 
  of anxiety for the student due to the unpredictable nature of the 
  solution process required.  

Figure 2. 3  Characteristes of mathematical instructional tasks*.

Lower-Level Demands Higher-Level Demands

Doing Mathematics

Procedures With Connections

• focus students' attention on the use of procedures for the purpose of 
  developing deeper levels of understanding of mathematical concepts
  and ideas.

• suggest pathways to follow (explicitly or implicitly) that are broad
  general procedures that have close connections to underlying 
  conceptual ideas as opposed to narrow algorithms that are opaque 
  with respect to underlying concepts. 

• usually are represented in multiple ways  (e.g., visual diagrams, 
  manipulatives, symbols, problem situations).  Making connections
  among multiple representations helps to develop meaning.

• require some degree of cognitive effort.  Although general 
  procedures may be followed, they cannot be followed mindlessly. 
  Students need to engage with the conceptual ideas that underlie the 
  procedures in order to successfully complete the task and develop 
  understanding.

*These characteristics are derived from the work of Doyle on academic tasks (1988), Resnick on high-level thinking skills (1987), and from the examination and categorization of 

hundreds of tasks used in QUASAR classrooms (Stein, Grover, & Henningsen, 1996; Stein, Lane, and Silver, 1996).  

The Task Analysis Guide 

Stein, Smith, Henningsen, & Silver, 2000, p.16 



David Crane’s Task 

 A fourth-grade class needs five leaves each day 
to feed its 2 caterpillars.  How many leaves 
would the students need each day for 12 
caterpillars? 

 
 Use drawings, words, or numbers to show how 
you got your answer. 

 
 



1. Anticipating 
likely student responses to mathematical problems"

•  It involves considering: 
•  The array of strategies that students might use to 

approach or solve a challenging mathematical task 
•  How to respond to what students produce 
•  Which strategies will be most useful in addressing the 

mathematics to be learned 

•  It is supported by: 
•   Doing the problem in as many ways as possible 
•   Discussing the problem with other teachers 
•   Drawing on relevant research 
•   Documenting student responses year to year 



Leaves and Caterpillar: 
Anticipated Solutions 
l  Unit Rate--Find the number of leaves eaten by one 

caterpillar and multiply by 12 or add the amount for one 
12 times  

l  Scale Factor--Find that the number of caterpillars (12) is 
6 times the original amount (2) so the number of leaves 
must be 6 times the original amount (5) 

l  Scaling Up--Increasing the number of leaves and 
caterpillars by continuing to add 5 to the leaves and 2 to 
the caterpillar until you reach the desired number of 
caterpillars (12) 

l  Additive--Find that the number of caterpillars has 
increased by 10 (2 + 10 = 12) so the number of leaves 
must also increase by 10 (5 + 10 = 15)  



Leaves and Caterpillar: 
Incorrect Additive Strategy 

Missy and Kate’s Solution 

 They added 10 caterpillars, and so I added 10 
leaves. 

 
  2 caterpillars             12 caterpillars 

 
  5 leaves                    15 leaves 

+10 

+10 



2. Monitoring 
students’ actual responses during independent work"

•  It involves: 
•  Circulating while students work on the problem and 

watching and listening 
•  Recording interpretations, strategies, and points of 

confusion 
•  Asking questions to get students back “on track” or to 

advance their understanding 

•  It is supported by: 
•  Anticipating student responses beforehand 
•  Carefully listening and asking probing questions 
•  Using recording tools 



Monitoring Tool 
 Strategy Who and What Order 



Monitoring Tool 
 Strategy Who and What Order 

List the different 
solution paths 

you anticipated 



Monitoring Tool 
 Strategy Who and What Order 
Unit Rate--Find the number of leaves eaten by 
one caterpillar and multiply by 12 or add the 
amount for one 12 times  
Scale Factor--Find that the number of 
caterpillars (12) is 6 times the original amount 
(2) so the number of leaves (30) must be 6 
times the original amount (5) 
Scaling Up--Increasing the number of leaves 
and caterpillars by continuing to add 5 to the 
leaves and 2 to the caterpillar until you reach the 
desired number of caterpillars  
Additive--Find that the number of caterpillars 
has increased by 10 (2 + 10 = 12) so the 
number of leaves must also increase by 10 (5 + 
10 = 15)  
OTHER 



Monitoring Tool 
 Strategy Who and What Order 
Unit Rate--Find the number of leaves eaten by 
one caterpillar and multiply by 12 or add the 
amount for one 12 times  
Scale Factor--Find that the number of 
caterpillars (12) is 6 times the original amount 
(2) so the number of leaves (30) must be 6 
times the original amount (5) 
Scaling Up--Increasing the number of leaves 
and caterpillars by continuing to add 5 to the 
leaves and 2 to the caterpillar until you reach the 
desired number of caterpillars  
Additive--Find that the number of caterpillars 
has increased by 10 (2 + 10 = 12) so the 
number of leaves must also increase by 10 (5 + 
10 = 15)  
OTHER 

Make note of 
which students 
produced which 
solutions and 

what you might 
want to highlight 



Monitoring Tool 
 Strategy Who and What Order 
Unit Rate--Find the number of leaves eaten by 
one caterpillar and multiply by 12 or add the 
amount for one 12 times  

Janine (number 
sentence) 
Kyra (picture) 

Scale Factor--Find that the number of 
caterpillars (12) is 6 times the original amount 
(2) so the number of leaves (30) must be 6 
times the original amount (5) 

Jason 

Scaling Up--Increasing the number of leaves 
and caterpillars by continuing to add 5 to the 
leaves and 2 to the caterpillar until you reach the 
desired number of caterpillars  

Jamal (table) 
Martin and Melissa 
did sets of leaves 
and caterpillars 
 
 

Additive--Find that the number of caterpillars 
has increased by 10 (2 + 10 = 12) so the 
number of leaves must also increase by 10 (5 + 
10 = 15)  

Missy and Kate 

OTHER—Multiplied leaves and caterpillars Darnell and Marcus 



3. Selecting 
student responses to feature during discussion 

•  It involves: 
•  Choosing particular students to present because of 

the mathematics available in their responses 
•  Making sure that over time all students are seen as 

authors of mathematical ideas and have the 
opportunity to demonstrate competence 

•  Gaining some control over the content of the 
discussion (no more “who wants to present next?”) 

•  It is supported by: 
•  Anticipating and monitoring 
•  Planning in advance which types of responses to 

select 



 
Mr. Crane’s Goals 
l  Students will recognize that the relationship between 

quantities is multiplicative not additive – that the 2 quantities 
(leaves and caterpillars) need to grow at a constant rate. 

l  Student will recognize that there are three related strategies 
for solving the task – unit rate, scale factor and scaling up. 

 
 
 



 
Mr. Crane’s Goals 
l  Students will recognize that the relationship between 

quantities is multiplicative not additive – that the 2 
quantities (leaves and caterpillars) need to grow at a 
constant rate. 
l  Need to show constant rate of change 
l  Need to emphasize multiplication 

l  Student will recognize that there are three related strategies 
for solving the task – unit rate, scale factor and scaling up. 
l  Need to show solutions that involve each of the strategies 

 
 
 



Monitoring Tool 
 Strategy Who and What Order 
Unit Rate--Find the number of leaves eaten by 
one caterpillar and multiply by 12 or add the 
amount for one 12 times  

Janine (number 
sentence) - shows 
multiplication 
Kyra (picture) 

Need for 
goal 2 

Scale Factor--Find that the number of 
caterpillars (12) is 6 times the original amount 
(2) so the number of leaves (30) must be 6 
times the original amount (5) 

Jason - shows 
multiplication 

Need for 
goal 2 

Scaling Up--Increasing the number of leaves 
and caterpillars by continuing to add 5 to the 
leaves and 2 to the caterpillar until you reach the 
desired number of caterpillars  

Jamal (table) – 
shows relationship 
between leaves 
and caterpillars 
Martin and Melissa 
did sets of leaves 
and caterpillars – 
all show 2 for 5 
 

Need for 
goal 2 

Additive--Find that the number of caterpillars 
has increased by 10 (2 + 10 = 12) so the 
number of leaves must also increase by 10 (5 + 
10 = 15)  

Missy and Kate 

OTHER—Multiplied leaves and caterpillars Darnell and Marcus 



4. Sequencing 
  student responses during the discussion"

•  It involves: 
•  Purposefully ordering presentations so as to make 

the mathematics accessible to all students 
•  Building a mathematically coherent story line 

•  It is supported by: 
•  Anticipating, monitoring, and selecting 
•  During anticipation work, considering how possible 

student responses are mathematically related 



Monitoring Tool 
 Strategy Who and What Order 
Unit Rate--Find the number of leaves eaten by 
one caterpillar and multiply by 12 or add the 
amount for one 12 times  

Janine (picture and 
number sentence) 
Kyra (picture) 

Scale Factor--Find that the number of caterpillars 
(12) is 6 times the original amount (2) so the 
number of leaves (30) must be 6 times the original 
amount (5) 

Jason 

Scaling Up--Increasing the number of leaves and 
caterpillars by continuing to add 5 to the leaves 
and 2 to the caterpillar until you reach the desired 
number of caterpillars  

Jamal (table) 
Martin and Melissa 
did sets of leaves 
and caterpillars 
 
 

Additive--Find that the number of caterpillars has 
increased by 10 (2 + 10 = 12) so the number of 
leaves must also increase by 10 (5 + 10 = 15)  

Missy and Kate 

OTHER—Multiplied leaves and caterpillars Darnell and Marcus 

Indicate the 
order in which 
students will 

share 



Monitoring Tool 
 Strategy Who and What Order 
Unit Rate--Find the number of leaves eaten by 
one caterpillar and multiply by 12 or add the 
amount for one 12 times  

Janine (picture and 
number sentence) 
Kyra (picture) 

3 (Janine) 

Scale Factor--Find that the number of caterpillars 
(12) is 6 times the original amount (2) so the 
number of leaves (30) must be 6 times the original 
amount (5) 

Jason 4 (Jason) 

Scaling Up--Increasing the number of leaves and 
caterpillars by continuing to add 5 to the leaves 
and 2 to the caterpillar until you reach the desired 
number of caterpillars  

Jamal (table) 
Martin and Melissa 
did sets of leaves 
and caterpillars 
 
 

2 (Jamal) 
1 (Martin) 

Additive--Find that the number of caterpillars has 
increased by 10 (2 + 10 = 12) so the number of 
leaves must also increase by 10 (5 + 10 = 15)  

Missy and Kate 

OTHER—Multiplied leaves and caterpillars Darnell and Marcus 



Leaves and Caterpillar Vignette 

Possible Sequencing: 
 
1.  Martin – picture (scaling up) 
2.  Jamal – table (scaling up) 
3.  Janine -- picture/written explanation (unit rate) 
4.  Jason -- written explanation (scale factor) 



5. Connecting 
student responses during the discussion"

•  It involves: 
•  Encouraging students to make mathematical 

connections between different student responses 
•  Making the key mathematical ideas that are the 

focus of the lesson salient 

•  It is supported by: 
•  Anticipating, monitoring, selecting, and sequencing 
•  During planning, considering how students might be 

prompted to recognize mathematical relationships 
between responses 



Leaves and Caterpillar Vignette 

Possible Connections: 
 
1.  Martin – picture (scaling up) 
2.  Jamal – table (scaling up) 
3.  Janine -- picture/written explanation (unit rate) 
4.  Jason -- written explanation (scale factor) 



Leaves and Caterpillar Vignette 

1.  Martin – picture (scaling 
up) 

2.  Jamal – table (scaling 
up) 

 

3.  Janine -- picture/written 
explanation (unit rate) 

 
 
4.  Jason -- written 

explanation (scale 
factor) 



Leaves and Caterpillar Vignette 

1.  Martin – picture (scaling 
up) 

2.  Jamal – table (scaling 
up) 

 

3.  Janine -- picture/written 
explanation (unit rate) 

 
 
4.  Jason -- written 

explanation (scale 
factor) 

How is Martin’s picture 
related to Jamal’s 
table? 



Leaves and Caterpillar Vignette 

1.  Martin – picture (scaling 
up) 

2.  Jamal – table (scaling 
up) 

 

3.  Janine -- picture/written 
explanation (unit rate) 

 
 
4.  Jason -- written 

explanation (scale 
factor) 

Where do you see 
the unit rate of 2 ½  
in Jamal’s table? 



Leaves and Caterpillar Vignette 

1.  Martin – picture (scaling 
up) 

2.  Jamal – table (scaling 
up) 

 

3.  Janine -- picture/written 
explanation (unit rate) 

 
 
4.  Jason -- written 

explanation (scale 
factor) 

Where do you see 
the scale factor of 6 

in the other 
solutions? 



Overview 

l  Analyze an instructional episode that will provide 
a basis for talking about classroom discussions  

l  Describe 5+ practices that you can learn in order 
to facilitate discussions more effectively and  
ground each in the instructional episode 

 
l  Discuss how the 5 practices could help improve 

teaching 



Why These Five Practices 
Likely to Help 
•  Provides teachers with more control 

•  Over the content that is discussed 
•  Over teaching moves: not everything improvisation 

•  Provides teachers with more time 
•  To diagnose students’ thinking 
•  To plan questions and other instructional moves 

•  Provides a reliable process for teachers to 
gradually improve their lessons over time 



Why These Five Practices  
Likely to Help 
•  Honors students’ thinking while guiding it in productive, 

disciplinary directions (Ball, 1993; Engle & Conant, 2002) 

•  Key is to support students’ disciplinary authority while 
simultaneously holding them accountable to discipline 

•  Guidance done mostly ‘under the radar’ so doesn’t 
impinge on students’ growing mathematical authority 

•  At same time, students led to identify problems with     
their approaches, better understand sophisticated ones, 
and make mathematical generalizations 

•  This fosters students’ accountability to the discipline	





Consider…. 

l  What relationship do you see between the 5+ 
practices and the mathematical practices in 
the CCSSM? 

 



Consider…. 

l  What would you “look for” in classrooms to 
see if the 5 practices are being used? 

 



Resources Related to the Five 
Practices 

l  Stein, M.K., Engle, R.A., Smith, M.S., & Hughes, E.K. 
(2008).Orchestrating productive mathematical 
discussions: Helping teachers learn to better incorporate 
student thinking.  Mathematical Thinking and Learning, 
10, 313-340. 

l  Smith, M.S., Hughes, E.K., & Engle, R.A., & Stein, M.K. 
(2009). Orchestrating discussions. Mathematics Teaching 
in the Middle School, 14 (9), 549-556. 



Resources Related to the Five 
Practices 

l  Smith, M.S., & Stein, M.K. (2011). 5 Practices for 
Orchestrating Productive Mathematics Discussions.  
Reston, VA: National Council of Teachers of 
Mathematics. 



For additional information, you 
can contact me at 

Peg Smith   
pegs@pitt.edu 
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